If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2-15k+60=4
We move all terms to the left:
k^2-15k+60-(4)=0
We add all the numbers together, and all the variables
k^2-15k+56=0
a = 1; b = -15; c = +56;
Δ = b2-4ac
Δ = -152-4·1·56
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-1}{2*1}=\frac{14}{2} =7 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+1}{2*1}=\frac{16}{2} =8 $
| x^2-x+200=0 | | 28=-7(5+u) | | 6(-2-4x)=-156 | | 7z–3z=16 | | t÷4-8=15 | | 13s+7s=20 | | 8x-2=3x-9 | | 12x-5=1+18x | | n=-1+14 | | 3h-8=68 | | 6n+-12=6n+-4 | | 7x+7=8x+15 | | 4y+7=87 | | .6(x+2)=12 | | 4(x-2)+3x=5x+12 | | 12x+2=9x-7 | | 2x+7+8x+3=180 | | 5t^2+9=0 | | 35(x+2)=12 | | -1|8d+7=16 | | 42=(2x+1)(x+3) | | 4.9=6.1-0.4x | | 12x-18=3x+15 | | 125h=h+6 | | 12(x−6)=9 | | 2x+6x-5=35 | | 6x-3+x=180 | | X2=3x | | -6x=13-(-17) | | Y=2x-3/x+1 | | -4(x+8)=-5x | | 3x+1(2x+4)=54 |